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A Method for Improving the Robustness
of PID Control

Stanisław Skoczowski, Stefan Domek, Krzysztof Pietrusewicz, and Bogdan Broel-Plater

Abstract—In this paper, an effective method is proposed for
robust proportional–integral–derivative (PID) control that is eas-
ily implementable on commonly used equipment such as pro-
grammable logic controller (PLC) and programmable automation
controller (PAC). The method is based on a two-loop model fol-
lowing control (MFC) system containing a nominal model of the
controlled plant and two PID controllers. Basic features exhibited
by the MFC structure are presented, and a technique to tune
both component controllers is given. The proposed structures have
been implemented in a programmable logic controller and tested
on control plants with perturbed parameters. Also, the proposed
control system has been checked for its performance in cases when
the operation of PID controllers is based on fuzzy logic. Tuning
rules for the fuzzy controllers in the presented MFC system have
been proposed. Results of tests lend support to the view that the
proposed control structures may find wide application to robust
control of plants with time-varying parameters.

Index Terms—Fuzzy control, model following control,
proportional–integral–derivative (PID) control, robustness.

I. INTRODUCTION

THE proportional–integral–derivative (PID) control algo-
rithm, well proven in practice, still arouses considerable

interest. Development of digital technology, progress in con-
trol theory, and identification have resulted in an increase in
publications devoted to new theoretical results and technical
solutions. This has been summarized in a survey paper [1].
Recently, a number of books dealing with PID control, e.g.,
[2]–[4], and a number of important papers [5]–[10] have ap-
peared. This justifies the need for seeking new original so-
lutions in the PID area, especially control algorithms being
resistant to varying process parameters and easy to implement.
Also, the use of fuzzy PID, the guiding rules for robust tuning
of which are sought for, is encountered in the literature [11].
One of the well-known methods for PID robust design is
the method based on the amplitude/phase margin approach.
Although having been used for many years [5], [12], [13],
among others, for processes with uncertain parameters, yet this
approach has proved itself as being quite complicated for PID
design [2].

In this paper, a simple method to improve the robustness of
PID control is proposed. It has been assumed that the method
should be easy to implement; therefore, provision is made for
the employment of typical software library modules for process
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Fig. 1. MFC control structure.

automation. The increase in robustness has been achieved using
a two-loop model following control (MFC) system [14]. The
MFC structure is noted for its simplicity and relatively high
robustness to disturbances and stable perturbations. However,
in spite of these advantages, MFC is not sufficiently reflected
in the literature. Some papers report the use of MFC systems
[15]–[19], another one deals with the properties of MFC [20].
Papers are encountered where the discussion is based on the
state variable approach with the assumption that the process
state vector is to follow the model state vector [21], [22],
and also papers where the system representation is given
by the transfer function [23], [24]. Such description makes
a comparison of the properties of the MFC structure with
those of the classic single-loop control structure much easier
[18], [24]–[27].

II. ESSENTIAL PROPERTIES OF MFC STRUCTURE

The MFC structure shown in Fig. 1 can be regarded as a part
of a more general class of systems called model-based control.
The essential component of the plant input signal in the MFC
structure is generated in an auxiliary control system containing
a model of the plant M(s) and its controller Rm(s) in the
feedback loop.

It means that the output of the model controller Rm(s) acts
on the input of the actual process plant. The second control loop
of the MFC structure contains the auxiliary controller R(s) and
the actual process P (s) disturbed by the signal d(s), where the
difference between the plant output y(s) and the model output
ym(s) is processed. Thus, the summed result of actions of both
controllers, i.e., R(s) and Rm(s), excites the input of the actual
plant P (s). Note that for R(s) = Rm(s) the MFC structure is
equivalent to the classic single-loop feedback system.
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Features exhibited by the MFC structure have been discussed
in [24] and [27] in detail. Here, we shall dwell briefly on
the main properties displayed by MFC. In order to evaluate
the robustness of the MFC structure, some assumptions with
respect to the process and its nominal model relation should be
made. There are many reasons responsible for the presence of
model uncertainties (errors in identification, errors in modeling,
deliberate model simplification, process nonlinearities, fluctua-
tions and variations of process parameters, etc.). Therefore, let
the process model be given by

M(s) = M0(s)e−sL (1)

and interrelated with the actual process P (s) by

P (s) = M(s) [1 + ∆(s)] (2)

where ∆(s) denotes perturbations. From Fig. 1, it follows that

y(s) = ym(s)
[
e−sL +

1 − e−sL + ∆(s)
1 + R(s)M0(s) [1 + ∆(s)] e−sL

]

+
d(s)

1 + R(s)M0(s) [1 + ∆(s)] e−sL
(3)

where

ym(s) = r(s)
Rm(s)M0(s)

1 + Rm(s)M0(s)
. (4)

If the process delay L = 0, (3) reduces to

y(s) = ym(s)
[
1 +

∆(s)
1 + R(s)M(s) [1 + ∆(s)]

]

+
d(s)

1 + R(s)M(s) [1 + ∆(s)]
. (5)

From (4) and (5), it may be easily noted that the relationship

y(s) ≈ ym(s) +
d(s)

1 + R(s)M(s) [1 + ∆(s)]
(6)

holds only if the condition |R(s)M(s)| > 1 is fulfilled. If
so, the follow-up error y(s) − ym(s) is almost independent
of perturbations ∆(s), and moreover, disturbances d(s) are
suppressed according to the design of the auxiliary controller
R(s). Hence, the MFC structure exhibits the same advanta-
geous properties as those of a two-degrees-of-freedom (2DOF)
control [18].

By comparison, for the classic control structure with only one
controller tuned to the process model but used to a perturbed
and disturbed process, the following relationship holds:

ycl(s) = r(s)
Rm(s)P (s)

1 + Rm(s)P (s)
+ d(s)

1
1 + Rm(s)P (s)

= ym(s)
[
1 +

∆(s)
1 + Rm(s)M(s) [1 + ∆(s)]

]

+
d(s)

1 + Rm(s)M(s) [1 + ∆(s)]
. (7)

The basic factor that differentiates the MFC structure from
the classic feedback structure is the disturbance sensitivity
Sd(s). From (4) and (6), it follows that Sr(s) + Sd(s) �= 1
holds true for MFC systems, as for 2DOF systems. Here, Sr(s)
is the input sensitivity and Sd(s) is the disturbance sensitivity
[23], [27].

III. DESIGN OF THE MODEL AND

AUXILIARY CONTROLLERS

It should be emphasized that the Rm controller, according
to (4), is associated with ym only while the corrective controller
R plays a crucial role in suppressing perturbations and distur-
bances [see (6)].

As may be inferred from Fig. 1, the model controller Rm

plays a dual role in the MFC structure from the viewpoint of
the auxiliary controller R. First, the Rm controller filters the
reference signal of R, which has a favorable effect on transients
in the process-containing loop, like in 2DOF systems. Due to
the smoothening by the RmM control loop reference signal, the
auxiliary controller R operates under much easier conditions.
Second, the model controller Rm assists the auxiliary controller
R in that it produces an additional process input um.

From what has been said, it might be assumed that the
auxiliary controller may be tuned for a smaller stability margin
or for a greater overshoot than controllers in simple single-loop
control systems.

It may also be noted that the MFC structure offers an ef-
fective solution for an unknown delay-affected process control
through a delay-free model in case the unknown time delay is
of limited value [27].

As shown in [24], the influence of disturbances and perturba-
tions on the process output is weaker, the greater is the transfer
function magnitude of the R controller than that of the Rm

controller, i.e.,

|R(jω)| > |Rm(jω)| , ω ∈ [0,∞). (8)

The inequality (8) is restricted by stability conditions deter-
mined by roots of the equation

1 + R(s)M(s) [1 + ∆(s)] = 0. (9)

Hence, a general design directive can be adopted here: |Rm|
is bounded below by sufficiently good reference tracking condi-
tions [see (4)] and |R| is bounded above by stability conditions
(9). At the same time, the inequality (8) should be as strong
as possible.

It can also be shown that if the parameters of the controller
R are chosen in compliance with the above-mentioned rules,
then the range of admissible perturbations ∆(s) for the MFC
structure is wider in comparison to the range obtained for the
classic single-loop structure. As follows from [24], for the
classic single-loop control structure containing the controller
Rm(s), the following inequality defining the admissible stable
perturbations may be obtained, i.e.,

|∆cl(s)| <
|1 + Rm(s)M(s)|
|Rm(s)M(s)| (10)
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which should be fulfilled for all ω with s = jω. Correspond-
ingly, the calculations made for the MFC structure yield

|∆MFC(s)| <
|1 + R(s)M(s)|
|Rm(s)M(s)| . (11)

It may be easily noted that the fulfilled condition (8) results
in the inequality

|∆cl(s)|max < |∆MFC(s)|max (12)

hence, MFC provides higher robustness to perturbations.
With general directives for designing MFC controllers in

mind, any known controller tuning technique in principle may
be employed here. For example, one of them is that based on
the Nyquist stability criterion [12], [13], [26]. In such a case,
for the perturbed open-loop system containing the process (2)
and the controller C(s) to be designed, we have

Kper(jω) = C(jω)M0(jω)e−jωL [1 + ∆(jω)] . (13)

If the process perturbations are bounded, i.e., they are subject
to the condition

|∆(jω)| ≤ ∆ < 1, ω ∈ [0,∞) (14)

the following inequality holds true:

1 − ∆ ≤ |1 + ∆(jω)| ≤ 1 + ∆ (15)

and also the phase ϕ∆(ω) of the expression ∆(jω) fulfills the
inequality

−A∆ ≤ ϕ∆ ≤ A∆, A∆ = arctan
∆√

1 − ∆2
(16)

where A∆ is the designated phase margin.
This is illustrated in Fig. 2, where the 1 + ∆(jω) vec-

tor and Knom(jω) = Rm(jω)M(jω)e−jωL are shown. These
two vectors multiplied yield the perturbed Nyquist plot
Kper(jω) (13).

On the strength of the above said, the following inequalities
hold for the magnitude and phase of the perturbed open-loop
system:

|Knom(jω)| (1 − ∆) ≤ |Kper(jω)| ≤ |Knom(jω)| (1 + ∆).
(17)

Fig. 2. Nyquist plots for the nominal system and perturbation.

Because the time delay L influences only the phase of the
Nyquist plot while its magnitude M(jω) is independent of L,
the only frequency ω0 such that

|Knom(jω0)| ≤
1

1 + ∆
(18)

ϕ(ω0) = − π + A∆ (19)

can be determined analytically in simple cases or approximately
in general.

For the ω0 value obtained, the MFC controller parameters
that provide a robustly stable (in Nyquist sense) perturbed
closed-loop system are to be found from (18) in the follow-
ing way:

1) the auxiliary controller R is tuned to the model (1) of the
process (2) for a small phase margin (16), e.g., A∆ =π/6;

2) the model controller Rm is tuned to the process model
(1) under the assumption that the phase margin (16)
corresponds to the adopted magnitude of the maximal
process perturbation (15), e.g., ∆ = 0.85.

The presented design method has been employed in [24]
for unperturbed processes described by the nth order multi-
time-lag model with the time constants spread between Tmin

and Tmax [20]. Using the same design procedure for per-
turbed processes and the PID controller given by the transfer
function

Rm(s) =
kc(1 + sTi)(1 + sTd)

sTi
(20)

the allowable controller gain can be obtained as

kc ≤
ω0Ti

√(
1 + ω2

0T
2
)n

(1 + ∆)km

√
(1 + ω2

0T 2
d ) (1 + ω2

0T 2
i )

(21)

where km is the gain of the nominal model and T is the process
mean time constant defined by

T =
n

n∑
i=1

1
Ti

, Tmin ≤ T ≤ Tmax. (22)
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TABLE I
RULE BASE FOR THE FUZZY PD CONTROLLER

The ω0 value in (21) is obtained from (19) by solving a
fourth-order algebraic equation

ω4
0

2
π

TiTdTL + ω3
0

[
2L

π
(TdT + TiT + TdTi)

+ TdTiT
2A∆

π
+ (n − 3)TdTiT

]

+ ω2
0

[
2L

π
(Td + Ti + T ) +

2A∆

π
(TdT + TiT + TdTi)

+ (n − 2)(TdT + TiT ) − 3TdTi

]

+ ω0

[
2L

π
+

2A∆

π
(Td + Ti + T ) + (n − 1)T

− 2(Td + Ti)
]
−

(
1 − 2A∆

π

)
≈ 0. (23)

IV. FUZZY MFC SYSTEM

Over the past few years, methods of artificial intelligence
in general and fuzzy logic in particular are strongly applicable
in industrial controllers. Controllers (fuzzy inference systems)
based on fuzzy logic give a simple way to take account of
experience gathered during the system operation. As shown in
[11], [28], and [29], fuzzy realization of mechanisms known
from the classic PID control theory presents no difficulties
at all.

As suggested by results of numerous experiments, fuzzy-
logic-based algorithms may be particularly adequate for
processes that are difficult to control by linear time-invariant
methods (Table I).

In such a case, nonlinear fuzzy PID algorithms are most
often in use. However, the main difficulty encountered when
employing them is intimate knowledge of the process to be
controlled and of the fuzzy control itself, which has to be
possessed by the user. This is because the design of nonlinear
fuzzy PID controllers necessitates choosing many coefficients,
the values of which cannot be determined analytically. This
is also the case when increased robustness to varying process
parameters is required [30]–[32]. The robust fuzzy MFC system
presented below reduces the limitation mentioned. In fuzzy
MFC, it is assumed that the structure of its controllers is always
the same, and any known method for PID tuning should be
applicable here with specific requirements to be met by MFC,
as discussed above, taken into account.

Fig. 3. Structure of PID-type fuzzy-logic PD-PI controller.

TABLE II
RULE BASE FOR THE FUZZY PI CONTROLLER

The proposed fuzzy MFC system employs two fuzzy PID
controllers of a typical PD + PI parallel structure shown
in Fig. 3.

Both PID controllers have been designed in such a way as to
minimize the overshoot that may occur during the transients:

1) for small errors (|E| ≈ 0) and slowly varying errors
(|∆E| ≈ 0), the controllers operate as a linear PID;

2) for very big absolute values of the error, the integration is
stopped (the controllers operate as PD with saturation);

3) for quickly diminishing big and medium absolute values
of the error, the negative gain of the path I is evaluated
(to allow a lead-in time for the integral component of the
controller output to be adjusted to the steady state).

To facilitate the process of tuning, it has been assumed that
structures of the controllers and rule base surfaces of them
are always the same. Another assumption adopted here is that
tuning will be confined to the evaluation of respective scaling
coefficients kj shown also in Fig. 3. The coefficients are asso-
ciated with the PID parameters through the fixed relationships

k0 = kc k1 = 0.5kcTd k2 = 3.3

k3 =
50kc

Ti
k4 = 0.5kc k5 = 0.033 (24)

where kc, Ti, and Td are settings of the respective linear
controller within the MFC structure (Rm or R).

Rule bases for fuzzy controllers with their linear operation
area marked are displayed in Table II. The corresponding
surfaces are depicted in Figs. 4 and 5, where the linear operation
area is also shown.

Figs. 6 and 7 illustrate the adopted fixed respective member-
ship functions.

V. SOME EXPERIMENTAL RESULTS

The proposed MFC systems have been widely tested by
both simulation and practical examinations. In simulation
experiments, robustness and control quality for the perturbed
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Fig. 4. Surface of the rule base for linear PD and PI actions.

Fig. 5. Surface of the rule base for the proposed PD and PI actions.

Fig. 6. Membership functions for input signals (error and error derivative).

plant gain and time constant, assuming constant parameters
of both controllers, have been tested and compared with the
classic control system. Both set point and plant load have
been varied. First, tests have been conducted on the computer-
simulated control structure under study. Second, tests on a
computer-emulated programmable logic controller dedicated to
the control of electrothermal processes with the MFC structure
have been done. Third, practical tests have been carried out
by implementing the proposed structures in a commercial PLC
(previously emulated) and then the controller effectiveness for
an electrothermal plant has been examined. As an illustration,
selected test results are presented below.

A. Simulation Tests

For simulation purposes, the plant transfer had the form
of a third-order time-lag system with time constants equal to
10 s, 20 s, and T3p s, and the model was assumed with the same
structure. Model time constant values were equal to 10, 20,
and 40 s.

In all control schemes, the PID controllers had the transfer
function (20). Both controllers have been tuned according to
the rules proposed in Section III. The respective parameters are
kc = 1.1, Ti = 40 s, and Td = 10 s for Rm, and kc = 2.0, Ti =
80 s, and Td = 20 s for R.



1674 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 52, NO. 6, DECEMBER 2005

Fig. 7. Membership functions for uPD and uPI signals.

Fig. 8. Temperature responses obtained for the classic (a) MFC and
(b) MFC-FL systems in case of nominal and perturbed processes.

Fig. 8 shows the plant outputs for the classic, MFC, and
MFC-FL systems for two different values of the largest plant
time constant (T3p = 40 s and T3p = 80 s, respectively).

Fig. 9. Control plant used in tests.

B. Practical Tests

The proposed MFC system has been tested for effectiveness
on temperature control of a multizonal laboratory electroheated
plant (metal block with overall dimensions 50 cm × 10 cm ×
5 cm equipped with a set of heaters of 500-W heat development
and Pt100 sensors) depicted in Fig. 9.

Heaters were energized by a pulsewidth-modulated signal of
a period of 4.095 s.

The static and dynamic properties of the employed process
plant were strongly dependent on working points (heating
power ratings). For the purposes of tuning, the adopted process
model M(s), which corresponds to energizing the third zone
heater as an input, and temperature taken in the second zone as
an output (P3−2), is described by the transfer function M(s) =
1/1((1 + s340)(1 + s1000)).

Plant perturbation consisted of displacing the gauge point
from the second zone into the first one (P3−1).

During the control process, a strong disturbance was applied
at t = 7500 s by switching on the fan of the third zone.

The model controller Rm and the corrective one R have
been realized in an antiwindup version with their linear parts
designed following the rules given in Section III, which yielded
the transfer functions

Rm(s) =
1.5(1 + s170)(1 + s1400)

(s1400)

R(s) =
25(1 + s340)(1 + s2800)

(s2800)
.

Fig. 10 illustrates the process of start-up and compensating
the disturbance for the nominal plant (P3−2) and classic and
MFC control structures. Fig. 11 depicts the same processes for
the perturbed plant (P3−1).

VI. CONCLUSION

Results obtained from tests carried out on both the real
process plant using an actual PLC with the implemented
MFC structure, and employing simulation, lend support to the
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Fig. 10. Temperature response for the nominal process.

Fig. 11. Temperature response for the perturbed process.

validity of theoretical considerations. The proposed control
structure exhibits a substantial robustness to plant parameter
changes and a low susceptibility to inaccuracy of the model
adopted to tune the controller. At the same time, the proposed
structure is easy to implement on PLCs available on the market
because it utilizes PID or fuzzy PID modules offered as part of
standard software. Therefore, the proposed structure presents
an effective alternative to control algorithms employed so far.
The structure presented in the paper provides pretty high ro-
bustness to process parameter variations with respect to those
of the nominal model used to tune the controller, and ensures
control performance typical of PID well tuned to a stationary
process.

REFERENCES
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